Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Production of hyperthermostable GH10 xylanase Xyl10B from Thermotoga maritima in transplastomic plants enables complete hydrolysis of methylglucuronoxylan to fermentable sugars for biofuel production.

Identifieur interne : 002D49 ( Main/Exploration ); précédent : 002D48; suivant : 002D50

Production of hyperthermostable GH10 xylanase Xyl10B from Thermotoga maritima in transplastomic plants enables complete hydrolysis of methylglucuronoxylan to fermentable sugars for biofuel production.

Auteurs : Jae Yoon Kim [États-Unis] ; Musa Kavas ; Walid M. Fouad ; Guang Nong ; James F. Preston ; Fredy Altpeter

Source :

RBID : pubmed:21080212

Descripteurs français

English descriptors

Abstract

Overcoming the recalcitrance in lignocellulosic biomass for efficient hydrolysis of the polysaccharides cellulose and hemicellulose to fermentable sugars is a research priority for the transition from a fossilfuel-based economy to a renewable carbohydrate economy. Methylglucuronoxylans (MeGXn) are the major components of hemicellulose in woody biofuel crops. Here, we describe efficient production of the GH10 xylanase Xyl10B from Thermotoga maritima in transplastomic plants and demonstrate exceptional stability and catalytic activities of the in planta produced enzyme. Fully expanded leaves from homotransplastomic plants contained enzymatically active Xyl10B at a level of 11-15% of their total soluble protein. Transplastomic plants and their seed progeny were morphologically indistinguishable from non-transgenic plants. Catalytic activity of in planta produced Xyl10B was detected with poplar, sweetgum and birchwood xylan substrates following incubation between 40 and 90 °C and was also stable in dry and stored leaves. Optimal yields of Xyl10B were obtained from dry leaves if crude protein extraction was performed at 85 °C. The transplastomic plant derived Xyl10B showed exceptional catalytic activity and enabled the complete hydrolysis of MeGXn to fermentable sugars with the help of a single accessory enzyme (α-glucuronidase) as revealed by the sugar release assay. Even without this accessory enzyme, the majority of MeGXn was hydrolyzed by the transplastomic plant-derived Xyl10B to fermentable xylose and xylobiose.

DOI: 10.1007/s11103-010-9712-6
PubMed: 21080212


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Production of hyperthermostable GH10 xylanase Xyl10B from Thermotoga maritima in transplastomic plants enables complete hydrolysis of methylglucuronoxylan to fermentable sugars for biofuel production.</title>
<author>
<name sortKey="Kim, Jae Yoon" sort="Kim, Jae Yoon" uniqKey="Kim J" first="Jae Yoon" last="Kim">Jae Yoon Kim</name>
<affiliation wicri:level="2">
<nlm:affiliation>Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida-IFAS, Gainesville, FL, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida-IFAS, Gainesville, FL</wicri:regionArea>
<placeName>
<region type="state">Floride</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kavas, Musa" sort="Kavas, Musa" uniqKey="Kavas M" first="Musa" last="Kavas">Musa Kavas</name>
</author>
<author>
<name sortKey="Fouad, Walid M" sort="Fouad, Walid M" uniqKey="Fouad W" first="Walid M" last="Fouad">Walid M. Fouad</name>
</author>
<author>
<name sortKey="Nong, Guang" sort="Nong, Guang" uniqKey="Nong G" first="Guang" last="Nong">Guang Nong</name>
</author>
<author>
<name sortKey="Preston, James F" sort="Preston, James F" uniqKey="Preston J" first="James F" last="Preston">James F. Preston</name>
</author>
<author>
<name sortKey="Altpeter, Fredy" sort="Altpeter, Fredy" uniqKey="Altpeter F" first="Fredy" last="Altpeter">Fredy Altpeter</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21080212</idno>
<idno type="pmid">21080212</idno>
<idno type="doi">10.1007/s11103-010-9712-6</idno>
<idno type="wicri:Area/Main/Corpus">003012</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003012</idno>
<idno type="wicri:Area/Main/Curation">003012</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003012</idno>
<idno type="wicri:Area/Main/Exploration">003012</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Production of hyperthermostable GH10 xylanase Xyl10B from Thermotoga maritima in transplastomic plants enables complete hydrolysis of methylglucuronoxylan to fermentable sugars for biofuel production.</title>
<author>
<name sortKey="Kim, Jae Yoon" sort="Kim, Jae Yoon" uniqKey="Kim J" first="Jae Yoon" last="Kim">Jae Yoon Kim</name>
<affiliation wicri:level="2">
<nlm:affiliation>Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida-IFAS, Gainesville, FL, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida-IFAS, Gainesville, FL</wicri:regionArea>
<placeName>
<region type="state">Floride</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kavas, Musa" sort="Kavas, Musa" uniqKey="Kavas M" first="Musa" last="Kavas">Musa Kavas</name>
</author>
<author>
<name sortKey="Fouad, Walid M" sort="Fouad, Walid M" uniqKey="Fouad W" first="Walid M" last="Fouad">Walid M. Fouad</name>
</author>
<author>
<name sortKey="Nong, Guang" sort="Nong, Guang" uniqKey="Nong G" first="Guang" last="Nong">Guang Nong</name>
</author>
<author>
<name sortKey="Preston, James F" sort="Preston, James F" uniqKey="Preston J" first="James F" last="Preston">James F. Preston</name>
</author>
<author>
<name sortKey="Altpeter, Fredy" sort="Altpeter, Fredy" uniqKey="Altpeter F" first="Fredy" last="Altpeter">Fredy Altpeter</name>
</author>
</analytic>
<series>
<title level="j">Plant molecular biology</title>
<idno type="eISSN">1573-5028</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biofuels (MeSH)</term>
<term>Blotting, Southern (MeSH)</term>
<term>Blotting, Western (MeSH)</term>
<term>Carbohydrate Metabolism (MeSH)</term>
<term>DNA Primers (MeSH)</term>
<term>Electrophoresis, Polyacrylamide Gel (MeSH)</term>
<term>Enzyme Stability (MeSH)</term>
<term>Fermentation (MeSH)</term>
<term>Glucuronates (metabolism)</term>
<term>Hydrolysis (MeSH)</term>
<term>Plants (enzymology)</term>
<term>Plants (metabolism)</term>
<term>Polymerase Chain Reaction (MeSH)</term>
<term>Thermotoga maritima (genetics)</term>
<term>Xylans (metabolism)</term>
<term>Xylosidases (biosynthesis)</term>
<term>Xylosidases (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Amorces ADN (MeSH)</term>
<term>Biocarburants (MeSH)</term>
<term>Fermentation (MeSH)</term>
<term>Glucuronates (métabolisme)</term>
<term>Hydrolyse (MeSH)</term>
<term>Métabolisme glucidique (MeSH)</term>
<term>Plantes (enzymologie)</term>
<term>Plantes (métabolisme)</term>
<term>Réaction de polymérisation en chaîne (MeSH)</term>
<term>Stabilité enzymatique (MeSH)</term>
<term>Technique de Southern (MeSH)</term>
<term>Technique de Western (MeSH)</term>
<term>Thermotoga maritima (génétique)</term>
<term>Xylanes (métabolisme)</term>
<term>Xylosidases (biosynthèse)</term>
<term>Xylosidases (génétique)</term>
<term>Électrophorèse sur gel de polyacrylamide (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Xylosidases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Xylosidases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glucuronates</term>
<term>Xylans</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Biofuels</term>
<term>DNA Primers</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Xylosidases</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Plantes</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Plants</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Thermotoga maritima</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Thermotoga maritima</term>
<term>Xylosidases</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plants</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Glucuronates</term>
<term>Plantes</term>
<term>Xylanes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Blotting, Southern</term>
<term>Blotting, Western</term>
<term>Carbohydrate Metabolism</term>
<term>Electrophoresis, Polyacrylamide Gel</term>
<term>Enzyme Stability</term>
<term>Fermentation</term>
<term>Hydrolysis</term>
<term>Polymerase Chain Reaction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Amorces ADN</term>
<term>Biocarburants</term>
<term>Fermentation</term>
<term>Hydrolyse</term>
<term>Métabolisme glucidique</term>
<term>Réaction de polymérisation en chaîne</term>
<term>Stabilité enzymatique</term>
<term>Technique de Southern</term>
<term>Technique de Western</term>
<term>Électrophorèse sur gel de polyacrylamide</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Overcoming the recalcitrance in lignocellulosic biomass for efficient hydrolysis of the polysaccharides cellulose and hemicellulose to fermentable sugars is a research priority for the transition from a fossilfuel-based economy to a renewable carbohydrate economy. Methylglucuronoxylans (MeGXn) are the major components of hemicellulose in woody biofuel crops. Here, we describe efficient production of the GH10 xylanase Xyl10B from Thermotoga maritima in transplastomic plants and demonstrate exceptional stability and catalytic activities of the in planta produced enzyme. Fully expanded leaves from homotransplastomic plants contained enzymatically active Xyl10B at a level of 11-15% of their total soluble protein. Transplastomic plants and their seed progeny were morphologically indistinguishable from non-transgenic plants. Catalytic activity of in planta produced Xyl10B was detected with poplar, sweetgum and birchwood xylan substrates following incubation between 40 and 90 °C and was also stable in dry and stored leaves. Optimal yields of Xyl10B were obtained from dry leaves if crude protein extraction was performed at 85 °C. The transplastomic plant derived Xyl10B showed exceptional catalytic activity and enabled the complete hydrolysis of MeGXn to fermentable sugars with the help of a single accessory enzyme (α-glucuronidase) as revealed by the sugar release assay. Even without this accessory enzyme, the majority of MeGXn was hydrolyzed by the transplastomic plant-derived Xyl10B to fermentable xylose and xylobiose.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21080212</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>08</Month>
<Day>01</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1573-5028</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>76</Volume>
<Issue>3-5</Issue>
<PubDate>
<Year>2011</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Plant molecular biology</Title>
<ISOAbbreviation>Plant Mol Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Production of hyperthermostable GH10 xylanase Xyl10B from Thermotoga maritima in transplastomic plants enables complete hydrolysis of methylglucuronoxylan to fermentable sugars for biofuel production.</ArticleTitle>
<Pagination>
<MedlinePgn>357-69</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s11103-010-9712-6</ELocationID>
<Abstract>
<AbstractText>Overcoming the recalcitrance in lignocellulosic biomass for efficient hydrolysis of the polysaccharides cellulose and hemicellulose to fermentable sugars is a research priority for the transition from a fossilfuel-based economy to a renewable carbohydrate economy. Methylglucuronoxylans (MeGXn) are the major components of hemicellulose in woody biofuel crops. Here, we describe efficient production of the GH10 xylanase Xyl10B from Thermotoga maritima in transplastomic plants and demonstrate exceptional stability and catalytic activities of the in planta produced enzyme. Fully expanded leaves from homotransplastomic plants contained enzymatically active Xyl10B at a level of 11-15% of their total soluble protein. Transplastomic plants and their seed progeny were morphologically indistinguishable from non-transgenic plants. Catalytic activity of in planta produced Xyl10B was detected with poplar, sweetgum and birchwood xylan substrates following incubation between 40 and 90 °C and was also stable in dry and stored leaves. Optimal yields of Xyl10B were obtained from dry leaves if crude protein extraction was performed at 85 °C. The transplastomic plant derived Xyl10B showed exceptional catalytic activity and enabled the complete hydrolysis of MeGXn to fermentable sugars with the help of a single accessory enzyme (α-glucuronidase) as revealed by the sugar release assay. Even without this accessory enzyme, the majority of MeGXn was hydrolyzed by the transplastomic plant-derived Xyl10B to fermentable xylose and xylobiose.</AbstractText>
<CopyrightInformation>© Springer Science+Business Media B.V. 2010</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kim</LastName>
<ForeName>Jae Yoon</ForeName>
<Initials>JY</Initials>
<AffiliationInfo>
<Affiliation>Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida-IFAS, Gainesville, FL, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kavas</LastName>
<ForeName>Musa</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Fouad</LastName>
<ForeName>Walid M</ForeName>
<Initials>WM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Nong</LastName>
<ForeName>Guang</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Preston</LastName>
<ForeName>James F</ForeName>
<Initials>JF</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Altpeter</LastName>
<ForeName>Fredy</ForeName>
<Initials>F</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>11</Month>
<Day>16</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Plant Mol Biol</MedlineTA>
<NlmUniqueID>9106343</NlmUniqueID>
<ISSNLinking>0167-4412</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D056804">Biofuels</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017931">DNA Primers</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005965">Glucuronates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014990">Xylans</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.2.1.-</RegistryNumber>
<NameOfSubstance UI="D014995">Xylosidases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D056804" MajorTopicYN="Y">Biofuels</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015139" MajorTopicYN="N">Blotting, Southern</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015153" MajorTopicYN="N">Blotting, Western</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050260" MajorTopicYN="Y">Carbohydrate Metabolism</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017931" MajorTopicYN="N">DNA Primers</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004591" MajorTopicYN="N">Electrophoresis, Polyacrylamide Gel</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004795" MajorTopicYN="N">Enzyme Stability</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005285" MajorTopicYN="N">Fermentation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005965" MajorTopicYN="N">Glucuronates</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006868" MajorTopicYN="N">Hydrolysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010944" MajorTopicYN="N">Plants</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016133" MajorTopicYN="N">Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020124" MajorTopicYN="N">Thermotoga maritima</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014990" MajorTopicYN="N">Xylans</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014995" MajorTopicYN="N">Xylosidases</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="Y">biosynthesis</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2010</Year>
<Month>07</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2010</Year>
<Month>10</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>11</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>11</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>8</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21080212</ArticleId>
<ArticleId IdType="doi">10.1007/s11103-010-9712-6</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Trends Plant Sci. 2001 May;6(5):219-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11335175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Biochem Biotechnol. 2002 Spring;98-100:327-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12018260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Prog. 2001 Mar-Apr;17(2):287-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11312706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2006;57(1):161-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16317036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biotechnol. 1997 Sep 16;57(1-3):151-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9335171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Biotechnol. 2010 Sep;30(3):176-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20225927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol J. 2006 Oct;1(10):1071-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17004305</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2001 Mar;183(6):2093-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11222610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Feb 9;315(5813):804-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17289988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2006 Feb;72(2):1496-506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16461704</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biotechnol. 2008 Aug;26(8):413-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18579242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2010 Sep;101(18):7155-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20427180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 2005 Dec 1;61(4):999-1009</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16247799</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2009 Aug;7(6):527-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19500296</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2009 Jan;75(2):395-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19011070</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2004 Sep;45(9):1176-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15509840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2009 Jul;75(13):4410-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19395566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2006 Apr 1;20(7):759-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16600909</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1993 Feb 1;90(3):913-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8381537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biotechnol. 2003 Jan;21(1):20-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12480347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1999 Jun;181(12):3695-704</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10368143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2001 Feb 15;29(4):970-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11160930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2005 Dec;62(24):3080-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16314927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biotechnol. 2007 Sep 15;131(3):362-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17765995</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Biochem Eng Biotechnol. 2007;108:237-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17665158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2007 Jul;25(7):759-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17572667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Lett. 2007 Apr;29(4):659-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17206370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2009 Mar 1;102(4):1045-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18973281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2010 Apr;8(3):351-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20102532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 May;54(4):569-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18476864</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Jan;53(1):1-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17971044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1995 May;61(5):1810-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16535021</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Ind Microbiol Biotechnol. 2003 May;30(5):279-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12698321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2001 Jan;19(1):71-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11135556</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Apr 24;104(17):7003-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17420457</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Prog. 2009 Mar-Apr;25(2):333-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19294662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 2007 Mar 1;362(1):63-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17241608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2010 Apr;8(3):332-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20070870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2001 Feb;25(3):261-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11208018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2005 Apr;96(6):673-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15588770</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Syst Evol Microbiol. 2000 May;50 Pt 3:1065-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10843046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1992 Feb;18(3):447-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1536922</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Cell Fact. 2007 Mar 15;6:9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17359551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Jul;150(3):1474-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19458113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transgenic Res. 2009 Oct;18(5):707-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19353301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2010 Apr;8(3):363-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20384855</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2003 Oct;69(10):5957-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14532050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1995 Dec;61(12):4403-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8534104</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Floride</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Altpeter, Fredy" sort="Altpeter, Fredy" uniqKey="Altpeter F" first="Fredy" last="Altpeter">Fredy Altpeter</name>
<name sortKey="Fouad, Walid M" sort="Fouad, Walid M" uniqKey="Fouad W" first="Walid M" last="Fouad">Walid M. Fouad</name>
<name sortKey="Kavas, Musa" sort="Kavas, Musa" uniqKey="Kavas M" first="Musa" last="Kavas">Musa Kavas</name>
<name sortKey="Nong, Guang" sort="Nong, Guang" uniqKey="Nong G" first="Guang" last="Nong">Guang Nong</name>
<name sortKey="Preston, James F" sort="Preston, James F" uniqKey="Preston J" first="James F" last="Preston">James F. Preston</name>
</noCountry>
<country name="États-Unis">
<region name="Floride">
<name sortKey="Kim, Jae Yoon" sort="Kim, Jae Yoon" uniqKey="Kim J" first="Jae Yoon" last="Kim">Jae Yoon Kim</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002D49 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002D49 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:21080212
   |texte=   Production of hyperthermostable GH10 xylanase Xyl10B from Thermotoga maritima in transplastomic plants enables complete hydrolysis of methylglucuronoxylan to fermentable sugars for biofuel production.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:21080212" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020